QUESTION PAPER 2012

- 101. Stress strain curve is always a straight line for
 - (a) Elastic materials
 - (b) Materials obeying Hook's law
 - (c) Elasto-plastic materials
 - (d) Plastic materials
- 102. The maximum value of poisson's for an elastic material is
 - (a) 0.25
- (b) 0.5
- (c) = 0.75
- (d) 1.0
- 103. The stress at which extension of a material takes place more quickly as compared to the increase in load is called
 - (a) Elastic point
 - (b) Plastic point
 - (c) Breaking point
 - (d) Yielding point
- 104. For ductile materials, the most appropriate failure theory is
 - (a) Maximum shear stress theory
 - (b) Maximum principal stress theory
 - (c) Maximum principal strain theory
 - (d) Shear strain energy theory
- 105. The materials which have the same elastic properties is in all directions are
 - (a) Brittle material
 - (b) Homogeneous material
 - (c) Isotropic material
 - (d) Hard material

- 106. An elastic bar of length 'I', cross sectional area A, Young's modulus of elasticity E and self weight W is having vertically, it is subjected to load applied axially at the bottom end. The total elongation of the bar is given by
 - (a) WI/AE + PI/AE
 - (b) WI/2AE + PI/AE
 - (c) WI/2AE + PI/2AE
 - (d) WI/AE + PL/2AE
- 107. The bending moment diagram is a cubic parabola for a cantilever
 - (a) Subjected to traingular load varying from zero at free end to maximum at fixed end
 - (b) With free and subjected to a moment
 - (c) Subjected to uniformly distributed load
 - (d) Subjected to concentrated load at the free end
- 108. For a simply supported beam with central load, the bending moment will be
 - (a) Least at the centre
 - (b) Least at the supports
 - (c) Maximum at the supports
 - (d) Maximum at the centre
- 109. The B.M on a section is maximum when shearing force
 - (a) Is maximum
 - (b) Is minimum
 - (c) Is equal
 - (d) Changes sign

(Question Paper-2012)

IECET	FDH] Civil Engineering (Question Paper-201)	2) 71
110.	The deflection due to couple M at the free end of a cantilever of length L is	(a) $q^2 / 2G$ (b) $q^2 / 2E$ (c) $q / 4G$ (d) $q / 4E$
355	(a) ML/EI (b) 2ML/EI (c) ML ² / 2EL (d) M ² L/2EI	117. The maximum shear stress in a thin tube is
111.	The shear force on a simply supported beam is proportional to (a) Displacement of the neutral axis	(a) Equal to average shear stress(b) Twice the average shear stress
	(b) Sum of the forces	(c) Half the average shear stress(d) One third average shear stress
	(c) Algebraic sum of traverse forces(d) Algebraic sum of axial forces	118. Macaulay's method is used for calculation of which quantity
112.	The shape of the bending moment diagram over the length of a beam, having no external load is always.	(a) Bending moment (b) Shear force
	(a) Parabolic (b) Cubical (c) Linear (d) Circular	(c) Slope and deflection (d) Stresses
113.	The ratio of maximum to average shear stress in a solid circular section is	119. Along the neutral axis of simply supported beam.
	(a) 1.0 (b) 1.33 (c) 1.5 (d) 1.7	(a) Fibers do not undergo strain (b) Fibers undergo minimum strain
114.	The poison's ratio for cork is	(c) Fibers undergo maximum strain
	(a) zero (b) 0.1	(d) Fibers undergo minimum stress
115		120. The area under stress strain curve represents
	any two orthogonal axes is (a) Always constant	(a) Workdone (b) Ductility (c) Strain energy
	(b) Always zero	(d) Residual stress

- (c) Always one
- (d) Always linear
- 116. Strain energy in torsion of a shaft per unit volume is given by considering 'q' as shear stress, E modulus of elasticity and G as modulus of rigidity
- 121. The maximum deflection of a cantilever beam due to pure bending moment (M) at its free end is
 - (a) MI²/3EI
- (b) MI²/4EI
- (c) MI²/6EI
- (d) $M^2/2EI$

Compressive strength

Both flexural & tensile strength

(c)

(d)

(Question Paper-2012)

Column both ends hinged

(d)

							73			
134.	The fineness modulus of fine aggregate					In working stress design, the factor of				
	is in t	the range of		To a Section 1		safe	ty is applied on			
the life i	(a)	2.0 to 3.5	(b)	3.5 to 5.0	*	(a)	Ultimate Stress			
	(c)	5.0 to 7.0	(d)	7.0 to10.0		(b)	and the second of the second o			
135.	For n	For making a good concrete, aggregate					Yield stress			
	should be in					(c)	Stress at elastic limit			

- should be in
 - Saturated condition (a)
 - Surface dry condition (b)
 - (c) Bone dry condition
 - Semi saturated condition (d)
- 136. For reinforced cement concrete the slump should be
 - 0 to 5 cm (a)
 - 2.5 to 7.5 cm (b)
 - 7.5 to 10 cm (c)
 - 5 to 12.5 cm (d)
- 137. The ratio of tensile to compressive strength of concrete is
 - 0.025 (a)
- 0.04
- (c) 0.1
- (d) 04
- 138. Design mix concrete is preferred over nominal mix concrete because
 - Strength of former is more (a)
 - Cement content of later is more (b)
 - It is easy to prepare former at site (c)
 - Strength of later is less (d)
- 139. Which of the following does not cause unsoundness is cement
 - Free lime (a)
 - (b) Magnesia
 - (c) Calcium Sulphate
 - (d) Silica
- The partial safety factor for steel as per IS 456-2000 is taken as
 - 1.15 (a)
- 1.25 (b)
- 1.50 (c)
- 1.75 (d)

142. In a RCC column if ties are not provided, the column is likely to

Breaking stress

- Fail by buckling (a)
- (b) Fail by crushing
- Behave like a beam (c)
- (d) Fail by torsion
- 143. To design a column, one should normally start by assuming the area of steel as

(d)

- (b) 0.15%
- (c) 0.5%
- (d) 0.75
- 144. Which of the following is generally not designed for shear
 - (a) A slab
 - A cantilever beam
 - A footing (c).
 - (d) A beam
- The maximum shear stress in a beam of 145. rectangular section is given by
 - (a) 1.25 times the average
 - (b) 1.5 times the average
 - (c) 1.75 times the average
 - 2.0 times the average
- 146. The radius of a bar bend to form a hook, should not be less than

(Question Paper-2012)

3552 2352

			*					
[ECET	FDH] Civil Engineering (Question Paper-20	12)*	venez nevestroistenesses 78					
158.	The sum of the exterior angles of a	164.	If a tacheometer is fitted with analiatic lens					
	closed traverse is equal to		(a) Additive constant is 100 multiplying constant is 0					
	(a) (2n-4) (b) (2n+4)		(b) Additive constant is 0, multiplying constant is 100					
159.	(c) (4n-2) (d) (4n+2) If the whole circle bearing of a line is		(c) Both additive constant and multiplying constant are 100					
	270° , then its bearing in quadrantal system is		(d) Both additive constant multiplying constant are 50					
*	(a) 90°W (b) 90°E	165.	One S.I unit of viscosity is equal to					
	(c) $180^{\circ} W$ (d) $180^{\circ} E$		(a) 10 poises (b) 981 poises					
160.	A line which passes through the optical centre of the objective and also through	2 3 6	(c) 9.81 Ns/m ² (d) kg.sec/m ²					
	the intersection of the cross hair, is called	166.	8m of oil (sp. Gr. = 0.8) head is equal					
			to the following water head					
	(a) Line of collimation		(a) 10 m (A) A) A (A) A) (b) (c)					
	(b) Axis of telescope		(b) 8 m (c) (b)					
	(c) Horizontal axis		(c) 6.4 m (4.0-1.067352/ 6537					
	(d) Trunnion axis		(d) 1 m 8888382382/814388					
161.	If R.L of a B.M is 200.00 m, back sight	167.	A vertical triangular area of altitude l					
	is 1.525 m and foresight is 3.285 m, R.L		has one side in the free surface of a					
	of the forward station, is		liquid. Its vertex is downward. The depth					
	(a) 198.460 m (b) 201.760m		of its centre of pressure is					
il.	(c) 198.240m (d) 201.525m		(a) 0.8 h (b) 0.75 h					
160			(c) 0.5 h (d) h/3					
162.	In trapezoidal formula of areas, the line joining the ends of the ordinates is	168.	The equation of continuity					
$\langle \cdot \uparrow \rangle$	assumed		(a) Is valid for incompressible fluids					
	(a) Semi circular (b) Straight		(b) Expresses the relation between					

- Expresses the relation between (b) mass and are of cross-section
- (c) Relates the density variations along a stream line
- Relates the mass rate of flow (d) along a stream tube

(d)

(b)

(d)

Circular

34560 sqft

64350 sqft

Parabolic

43560 sq.ft

54360 sq.ft

163. 1 acre is equal to

(a)

(c)

- 169. Flow of a fluid from low pressure to high pressure is
 - (a) Possible in upward flow through a uniform vertical line
 - (b) Possible in flow through a converging pipe with horizontal axis
 - (c) Possible in flow through a diverging pipe with a horizontal axis
 - (d) Impossible if the passage has a constant cross-section
- 170. Differential manometers are used for measuring
 - (a) Velocity of fluid at a point
 - (b) Pressure of fluid at a point
 - (c) Discharge of fluid
 - (d) Difference of pressure between two points
- 171. The length of staircase between the landings is called
 - (a) rise
 - (b) tread
 - (c) flight
 - (d) effective length
- 172. A V-notch is considered to be a better notch because
 - (a) Its C_d is practically uniform over a wide range of heads
 - (b) It produces negligible contraction of the nappe
 - (c) It keeps the head within a reasonable limit even for large discharges
 - (d) Its C_d is smaller

- 173. An error of 1 mm is committed in the measurement of head over a rectangular notch. If the head is 0.3m the percent error in discharge is
 - (a) 0.5
 - (b) 0.6
 - (c) 1.0
 - (d) 1.5
- 174. The Hagen-Poiseuille equation gives
 - (a) Head loss in liminar flow
 - (b) Boundary shear stress in laminar flow
 - (c) Shear stress distribution in any pipe flow
 - (d) Velocity distribution in any pipe flow
- 175. The loss of head due to friction in turbulent flow through a circular pipe
 - (a) Varies cube of average velocity
 - (b) Varies inversely as square of average velocity
 - (c) Varies as square of average velocity
 - (d) Is directly proportional to average velocity
- 176. Laminar flow through a pipe, the velocity distribution curve is
 - (a) Logarithmic
- (b) Parabolic
- (c) Elliptical
- (d) Hyperbolic
- 177. For the most economical trapezoidal section of an open channel
 - (a) Depth of flow = twice base width
 - (b) Depth of flow = Hydraulic radius

[ECET FDH] Civil Engineering (Question Paper-2012)

- (c) Sloping side = half the top width
- (d) Sloping side = base width
- 178. Froude's number is defined as the ratio of
 - (a) Inertia force to viscous force
 - (b) Inertia force to elastic force
 - (c) Inertia force to pressure force
 - (d) Inertia force to gravity force
- 179. The critical velocity for a flow of qm³ width of a wide rectangular channel is given by
 - (a) $\left(\frac{q^2}{g}\right)^{1/3}$ (b) $(q^2g)^{1/3}$
 - (c) $\left(\frac{g}{q^2}\right)^{1/3}$ (d) $(qg)^{1/2}$
- 180. The function of scroll case of a reaction turbine is to
 - (a) Guide the water to the runner at appropriate angle
 - (b) Guide the water smoothly to the tailrace
 - (c) Distribute the water evenly around the wheel
 - (d) Reduce the eddy and shock losses
- 181. The runner blades of a kaplan turbine are
 - (a) More curved than propeller blades
 - (b) More curved than pelton blades
 - (c) More curved than francis blades
 - (d) Less curved than francis blades
- 182. When the speed of a centrifugal pump is constant
 - (a) Shaft power decreases with increase of Q
 - (b) Hm decreases with increase of Q

- (c) Q increase with increase of H_m
- (d) Q is independent of H_m
- 183. The optical square is based on the principle of optical
 - (a) Reflection
 - (b) Refraction
 - (c) Double reflection
 - (d) Double refraction
- 184. A reservoir provided at the intake head works from which water enters the penstock is
 - (a) Power canal (b) Tail rack
 - (c) Fore bay (d) Trash rack
- 185. Consumptive use is
 - (a) Water used up in plant metabolism
 - (b) Sum of evapo-transpiration and amount used up in plant metabolism
 - (c) Sum of evapo-transpiration and infiltration losses
 - (d) Combined use of surface and ground water resources
- 186. The head under which a centrifugal pump works is called
 - (a) Piezometric head
 - (b) Pressure head
 - (c) Suction head
 - (d) Manometric head
- 187. The volume of water that can be extracted by force of gravity from a unit volume of aquifer material is known as
 - (a) Specific capacity

- (b) Specific yield
- (c) Specific retention
- (d) Specific storage
- 188. One cumec day is equal to
 - (a) 8.64 hectare metres
 - (b) 86.4 hectare metres
 - (c) 864 hectare metres
 - (d) 0.864 hectare meters
- 189. Lacey considered channel section
 - (a) Rectangular
 - (b) Trapezoidal
 - (c) Semi elliptical
 - (d) Elliptical
- 190. Land is said to be water logged when
 - (a) Gravity drainage is ceased
 - (b) Permanent wilting point is reached
 - (c) Slinity of soil increases
 - (d) Capillary fringe reaches root zone of plants
- 191. Hydraulic jump occurs when the flow changes from
 - (a) Super critical to sub critical
 - (b) Sub critical to super critical
 - (c) Critical to turbulent
 - (d) Laminar to turbulent
- 192. Streams that contribute to the ground water are called
 - (a) Effluent streams
 - (b) Ground water stream

- (c) Influent streams
- (d) Perennial stream
- 193. Rational method correlates
 - (a) Run off coefficient with intensity of rainfall
 - (b) Run off co efficient with drainage area
 - (c) Drainage area with intensity of rainfall
 - (d) Intensity of rainfall with run off
- 194. The example of multiple Arch type buttress dam in India is
 - (a) Mir-Alam dam
 - (b) Khadakwasla dam
 - (c) Iddikki dam
 - (d) Koyna dam
- 195. Surcharges storage of reservoir is the volume of water stored between
 - (a) Normal pool level and maximum pool level
 - (b) Maximum pool level & minimum pool level
 - (c) Minimum pool level and normal poor level
 - (d) Normal pool level and revert bed level
- 196. Seepage endangers the stability of an earth dam built on previous foundation because of piping which depends on
 - (a) Height of dam
 - (b) Quantity of seepage flow

- (c) Value of exit gradient
- (d) Total reservoir storage capacity
- 197. Inverted filter for providing foundation drainage has
 - (a) Multi layers of soil particles of same permeability
 - (b) Multi layers in which permeability increase from top to bottom
 - (c) Multi layers in which permeability increases from bottom to top
 - (d) Only one layer of soil
- 198. Gravity dams transfer load to foundation by
 - (a) Arch action
 - (b) Cantilever action
 - (c) Both arch and cantilever action
 - (d) Cohesion
- 199. A chute spill way is generally provided with
 - (a) A weir
 - (b) A barrage

- (c) Concrete
- (d) An earth dam
- 200. The function of surge tank is to
 - (a) Avoid flow in reverse direction
 - (b) Smoothen the flow
 - (c) Act as a reservoir for emergency condition
 - (d) Relieve the pipe line of excessive pressure transients.

ANSWERS

(101)	b	(102) b	(103)	d	(104)	a	(105)	€	(106)	ь	(107)	a
(108)	đ	(109) d	(110)	c	(111)	c	(112)	c	(113)	ь	(114)	a
(115)	a	(116) a	(117)		(118)	c	(119)	а	(120)	С	(121)	d
(122)	c	(123) c	(124)	b	(125)	d	(126)	ь	(127)	С	(128)	a
(129)	d	(130) a	(131)	a	(132)	b	(133)	a	(134)	a	(135)	a
(136)	d	(137) c	(138)	ь	(139)	d	(140)	а	(141)	b	(142)	a
(143)	c	(144) a	(145)	ь	(146)	a	(147)	b	(148)	С	(149)	d
(150)	b	(151) a	(152)	С	(153)	d	(154)	c	(155)	a	(156)	С
(157)	d	(158) b	(159)	а	(160)	a	(161)	С	(162)	ь	(163)	a
(164)	ь	(165) a	(166)	c	(167)	c	(168)	d	(169)	c	(170)	d
(171)	c	(172) a	(173)	а	(174)	a	(175)	c a	(176)	b	(177)	c
(178)	đ	(179) a	(180)	ь	(181)	a	(182)	c	(183)	c	(184)	c
(185)	b	(186) d	(187)	a	(188)	a	(189)	c	(190)	d	(191)	a
(192)	c	(193) a	(194)	a	(195)	a	(196)	С	(197)	b	(198)	c
(199)	d	(200) d					***					

