142		·∞∞∞ ECET [FDH] MECHANICAL	ENGINEERING
	ECET	2012	Windows
	ECET'	2012	775erabae
**	Questions number 1 to 100 will be of M	aths, Physics and Chemistry.	/ 8535235 814396758
101.	A mortise gauge is a		()
	(1) planning tool	(2) striking tool	
	(3) marking tool	(4) boring tool	
102.	A saw which cuts wood during the retur		()
	(1) push saw	(2) pull saw	
	(3) rip saw	(4) hand saw	
103.	In a shaper, tool head consist of	And the second second second	()
	(1) clapper box	(2) work holding device	
	(3) collet	(4) four sided tool post	4
104.	The swing diameter over the bed is of the lathe.	the height of the centre measur	ed from the bea
	(1) equal to	(2) one and half times	
	(3) twice	(4) thrice	and have
105.	The rake angle required to machine brass	by HSS tool is	- ()
	$(1) 0^0$	(2) 10 ⁰	
	$(3) 20^0$	$(4) = 10^0$	
106.	The binding material used in cemented ca	urbide tool is	()
	(1) tungsten	(2) chromium	
	(3) silicon	(4) cobalt	
107.	The relation between tool life (T) and cur	tting speed (V) is $VT^n = constant$. In t	his relation, the
	value of a n depends upon	· · · ·	()
	(1) work material	(2) working conditions	
	(3) tool material	(4) type of chip produced	
108.	The usual value of the point angle of a dr	ill is	()
or service	$(1) 60^0$	(2) 80^0	
	(3) 112 ⁰	(4) 118 ⁰	
109.	Drilling is an example of	A second and a second second second	()
A State	(1) Orthogonal cutting	(2) Oblique cutting	
	(3) Simple cutting	(4) Uniform cutting	
110.	The top and sides of the table of a shaper	usually have	()
	(1) I-type slots	(2) L-type slots	
	(3) T-type slots	(4) H-type slots	

13 m

-

ECET	2012 QUESTION PAPER		1	43
111.	In lapping operation, the amount of thickn	ness of metal removed is	()
	(1) 0.005 to 0.014 mm	(2) 0.01 to 0.1 mm		
	(3) 0.05 to 0.1 mm	(4) 0.5 to 1 mm		
112.	The process of removing metal by a cutte work piece is called	er which is rotated in the same direction of	f travel (0)
	(1) up milling	(2) down milling		
	(3) face milling	(4) end milling		
113.	CNC drilling machine is considered to be	and the second	(
	(1) P.T.P. controlled machine	(2) Continuous path controlled mach	ine	
	(3) Servo controlled machine	(4) Adaptive controlled machine		
114.	Seam welding is best adopted for metal th		í	
114.	(1) 0.025 to 3 mm	(2) 3 to 5 mm	-	
÷.	(3) 5 to 8 mm	(4) 8 to 10 mm	. All	
115.	In welding, flux is used to			3
115,	(1) improve melting point of metal	(2) obtain high temperature	and the second s	
1		(4) protect molteri metal from atmos	phere	
11/	(3) mix the metal at joint		prici c	
116.	Acetelyne in gas welding process is obtain	(2) potassium carbonate	(
	(1) calcium carbonate	(4) calcium carbide		
	(3) potassium carbide		(
117.	The electron beam welding can be carried	ANALYSING ANALYSING COMPANY	τ.	
	(1) a shielded gas environment	(2) open air		
	(3) vacuum	(4) a pressurized inert gas chamber		
118.	Following is the fusion type welding proc	AND A CONTRACT OF A CONTRACT.	C	
	(1) submerged are welding process	(2) explosive welding process		
	(3) friction welding process	(4) diffusion welding process		
119.	In hot machining tool is made of		C	
	(1) tungsten carbide	(2) brass		
	(3) diamond	(4) stainless steel		
120.	The increase in hardness due to cold work		(
Calification And	(1) age hardening	(2) induction hardening		
alater and a second	(3) work hardening	(4) flame hardening		
121.	In die casting, machining allowance is		(
	(1) small	(2) large		
	(3) very large	(4) not provided		
122.	The draft allowance on casting is general	ly	11 (
100 000 000 000		(0) 0 ·		
	(1) 1 to 2 cm/m	(2) 2 to 5 cm/m		

123.	A casting defect which occurs near the in known as	gates as rough lumps on the surface of a casting is ()
	(1) shift	(2) sand wash
	(3) swell	(4) scab
124.		to ()
¥.	(1) directional solidification	(2) filling the cavities with molten metal
	(3) to create the cavity in the casting	(4) to minimize wastage of metal
125.	The symbol used for butt resistance weld	is ()
	(1)	(2)
	(3)	(4)
126.	The roughness grade symbol for the rough	nness value of 6.3 micrometers is
	(1) N 9	(2) N 10
	(3) N 11	(4) N 12
127.	The sand used for making cores is	
	(1) green sand	(2) dry sand
	(3) loam sand	(4) oil sand
128.	Steel balls for ball bearings are generally n	nade of ()
	(1) stainless steel	(2) nodular cast iron
	(3) free carbon steel	(4) carbon chrome steel
129.	The shock resistance of steel is increased	by adding ()
	(1) nickel	(2) chromium
	(3) cobalt and molybdenum	(4) nickel and chromium
130.	The force that cancel the effect of the for	ce system acting on the body is known as ()
	(1) resultant	(2) equilibrant
1	(3) neutral force	(4) balancing force
131.	In the method of joints for the analysis or equilibrium equations, which are available	f forces in the members of the truss, the number of at each joint are ()
	(1) 2	(2) 3
and the second	(3) 4	(4) 5
132.		gram at which the cross sectional area of the test ()
	(1) elastic limit	(2) upper yield point
	(3) lower yield point	(4) ultimate stress point

A simply supported beam A of length 1 breadth b and depth d carries a central load W. Another 133. beam of the same dimensions carries a central load equal to 2 W. The deflection of beam B will) as that of A be (2) half (1) one fourth (4) four times (3) double 134. The percentage elongation for a ductile material are usually.) (2) 5 to 10% (1) less than 5% (4) more than 15% (3) 10 to 15% 135. In a strained material subjected to two normal stresses, the maximum shear stress is equal to) (2) difference of the normal stresses (1) sum of the normal stresses (4) half the difference of the normal stresses (3) half the sum of the normal stresses the strain energy The strain energy stored in a body when suddenly loaded is 136. stored when same load is applied gradually. (2) equal to (1) half (4) four times (3) twice 137. In powder metallurgy the range of pressures to which powdered metals in desired proportions are compressed in noulds is (2) 50 to 300 bar (1) 10 to 50 bar (4) 690 to 13750 bar (3) 310 to 650 bar 138. The velocity of the belt of mass 'm' and tension 'T', for maximum power is) (2) $T \times 3$ (1) T/3(4) (3m/T)(3) $\sqrt{T}/3m$ The included angle for the V-belt is usually) 139. (2) 20 to 30° (1) 10 to 20° (3) 30 to 40° (4) 50 to 60° When the belt is stationary, it is subjected to some tension known as initial tension. The value of 140. this tension is equal to the (1) tension in the tight side of the belt (2) tension in the slack side of the belt (3) sum of the tensions on the tight side and slack side of the belt (4) average tension of the tight and slack sides of the belt The relation between the pitch of the chain (p) and pitch circle diameter of the sprocket (D) is 41.) given by (2) $p = D \sin(120^0/T)$ (1) $p = D \sin (90^{\circ}/T)$ (4) $p = D \sin (360^{\circ}/T)$ (3) $p = D \sin(180^{0}/T)$

	In roller chain the roller diameter is ap	proximately of the pitch.	(
		(2) 6/8	
	(1) 5/8	(4) same as that	
142	(3) 7/8When spring index increases, the value		. (
143.	(1) increases linearly	(2) decreases linearly	() ()
	(3) remains same	(4) increases exponentially	
144.	When two non intersecting and non-co known as	oplanar shafts are connected by gears, the	arrangement (
	(1) spur gearing	(2) helical gearing	
	(3) bevel gearing	(4) spiral gearing	
145.	Pitch point of a cam is	The bearing a subscription of the	
	(1) a point on the pitch curve having	minimum pressure angle	And States
	(2) a point on the pitch curve having	maximum pressure angle	Carlonarda dana
	(3) any point on the pitch curve	3.5	tern Carrie
	(4) any point on the pitch circle		er. An
146.	The ratio of hoop stress to longitudin	al stress is	(
	(1) 0.5	(2) 1	
	(3) 2	(4) 3	
147.	The shaft A is solid of diameter 100 t	nm and shaft B is hollow with outer diame em are made of same material. The torque	eter 100 mm a e transmitted (
147.	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the	nm and shaft B is hollow with outer diame em are made of same material. The torque shaft A. (2) 1/6	eter 100 mm a e transmitted (
147.	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of	nm and shaft B is hollow with outer diame em are made of same material. The torque shaft A.	eter 100 mm a e transmitted (
147.	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12	nm and shaft B is hollow with outer diame em are made of same material. The torque shaft A. (2) 1/6 (4) 15/16	ter 100 mm a e transmitted (
	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12	nm and shaft B is hollow with outer diame em are made of same material. The torque shaft A. (2) 1/6 (4) 15/16	ter 100 mm a e transmitted (
	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12 Steady flow energy equation for a c	nm and shaft B is hollow with outer diame em are made of same material. The torque shaft A. (2) 1/6 (4) 15/16 ompressor is	eter 100 mm a e transmitted (
148.	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12 (3) 13/12 (1) w = $h_2 - h_1$	nm and shaft B is hollow with outer diameter em are made of same material. The torque shaft A (2) 1/6 (4) 15/16 ompressor is (2) w = $h_1 - h_2$	ter 100 mm a e transmitted (
148.	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12 Steady flow energy equation for a contract (1) w = h_2-h_1 (3) Q = h_1-h_2	nm and shaft B is hollow with outer diameter em are made of same material. The torque shaft A (2) 1/6 (4) 15/16 ompressor is (2) w = $h_1 - h_2$	e transmitted (
148.	The shaft A is solid of diameter 100 miner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12 Steady flow energy equation for a c (1) $w = h_2 - h_1$ (3) $Q = h_1 - h_2$ Work done in a flow process is	nm and shaft B is hollow with outer diameter em are made of same material. The torque shaft A (2) 1/6 (4) 15/16 ompressor is (2) w = h_1 - h_2 (4) $h_1 = h_2$	ter 100 mm a e transmitted (
148.	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12 Steady flow energy equation for a control (1) w = h_2-h_1 (3) Q = h_1-h_2 Work done in a flow process is (1) pv (3) $\int v dp$	nm and shaft B is hollow with outer diameters emare made of same material. The torque shaft A (2) 1/6 (4) 15/16 ompressor is (2) $w = h_1 - h_2$ (4) $h_1 = h_2$ (2) $\int p dv$ (4) $-\int v dp$	eter 100 mm a e transmitted ((
148. 149.	The shaft A is solid of diameter 100 minner diameter 50 mm and both of the shaft B is as that of (1) 1/8 (3) 13/12 Steady flow energy equation for a c (1) $w = b_2 - h_1$ (3) $Q = h_1 - h_2$ Work done in a flow process is (1) pv (3) $\int v dp$	nm and shaft B is hollow with outer diameters emare made of same material. The torque shaft A (2) 1/6 (4) 15/16 ompressor is (2) $w = h_1 - h_2$ (4) $h_1 = h_2$ (2) $\int p dv$ (4) $-\int v dp$	e transmitted (((

(Reversed Joule cycle is known as	151.
	(2) Carnot cycle	(1) Rankine cycle	•
	(4) Stirling cycle	(3) Bell-Coleman cycle	
i Du	o, the order of efficiency of Otto, Diesel	For same heat input and compression cycles is	152.
	(2) $\eta_{Otto} > \eta_{Dual} > \eta_{Diesel}$	(1) $\eta_{\text{Otto}} > \eta_{\text{Diesel}} > \eta_{\text{Dual}}$	
	(4) $\eta_{\text{Dual}} > \eta_{\text{Otto}} > \eta_{\text{Diesel}}$	(3) $\eta_{\text{Diesel}} > \eta_{\text{Dual}} > \eta_{\text{Otto}}$	
(The condition for an irreversible cycle	153.
	(2) $\delta(\delta q/T) < 0$	(1) $\delta(\delta q/T) = 0$	
	(4) $\delta(\delta q/T) = \infty$	(3) $\delta(\delta q/T) > 0$	
(The isentropic process means	154.
and the	(2) adiabatic process	(1) reversible process	
States of the second	(4) constant entropy process	(3) reversible adiabatic process	
(valve of a refrigerator	During throttling process in an expans	155.
	and the second sec	(1) enthalpy remains constant but pres	
	and the second s	(2) pressure remains constant but enth	
		(3) constant enthalpy process	
	onstant	(4) both pressure and enthalpy remain	
ing tl	n ³ is heated by supplying 100 kJ of heat		156.
(,		process. The change in internal energy	150.
i.	(2) 5 kJ	(1) 0 kJ	
	(4) 2000 kJ	(3) 100 kJ	
(The effective inhibitor of pre-ignition i	157.
	(2) water	(1) alcohol	
\$	(4) diesel	(3) lead	-10-10-10-10-10-10-10-10-10-10-10-10-10-
iken : (\	nT/60), for a four stroke engine 'n' should	In the expression of brake power BP =	158.
	(2) N/2	(1) N	
	(4) N/4	(3) 2N	
	m	where, $N =$ speed of the crank shaft in	
(being used in S.I. engines, due to	Hydrocarbon fuels of Paraffin family a	159.
	(2) high octane number	(1) high cetane number	
	(4) high specific heat	(3) high heating value	

148		STATES (FDH) MECHANICAL ENGIN	JEERI	NG
160.	The flow ratio in case of Francis turbine var	ies from	()
	(1) 0.15 to 0.3	(2) 0.4 to 0.5		
	(3) 0.6 to 0.9	(4) 1 to 1.5		
161.	The ratio of the normal force of jet of water to that when the plate is normal to jet, is	on a plate inclined at an angle of 60^0 as	compa (ires
	(1) 1	(2) $\sqrt{3}/2$		
	(3) 1/2	(4) 0		AL DE
162.		ncy	()
	(1) the velocity of flow at outlet must be zer			
	(2) the velocity of flow at inlet must be zero			
	(3) the velocity of whirl at entrance must be			1
	(4) the velocity of whirl at outlet must be zer		anter and an and an and an	
163.	Centrifugal pumps dealing with mud have an	impeller of the type	()
	(1) open	(2) double suction	2	See.
	(3) one-side shrouded	(4) two-sides shrouded	Decentration Managerration Managerration	
164.	Specific speed of impulse turbine ranges from	m	()
	(1) 1000 to 2000	(2) 300 to 1000		*
	(3) 60 to 300	(4) 10 to 50		
165.	Hydraulic ram is a pump which works on the	e principle of	()
	(1) centrifugal action	(2) reciprocating action		
	(3) positive displacement action	(4) inertia forces of water in the supp	ly line	е
166.	and the second se		()
	(1) Diesel cycle	(2) Otto cycle		
Terra .	(3) Dual cycle	(4) Ericssion cycle		
167.	While drawing a hydraulic or pneumatic circu	uit, it must being with and end w	vith	
1 de la	O ELY		()
1	(1) pump, actuator	(2) filter, flow control valve		
Contraction of the	(3) pressure gauge, pressure control valve	(4) service units, signaling elements		
168.	The pressure lines in the wet region of Molli	er chart are straight because	()
And a second	(1) pressure remains constant	(2) volume remains constant		
	(3) temperature remains constant	(4) enthalpy remains constant		
169.	A safety valve mainly used with locomotive a	and marine boilers is	()
	(1) lever safety valve	(2) dead weight safety valve		
	(3) high steam and low water safety valve	(4) spring loaded safety valve		
	(3) high steam and low water safety valve			

170.	In order to compare the capacity of boilers, the are taken as	e leeu water temperature and working prod	50
	(1) 100° C and normal atmospheric pressure		
	(2) 100 ⁰ C and 1.1. bar		
	(3) 50 ⁰ C and normal atmospheric pressure		
	(4) 50^{0} C and 1 bar pressure		
171.	The Mach number of steam flow at exit to a co	nvergent divergent nozzle should be (
	(1) 0	(2) less than 1	1
	(3) more than 1	(4) equal to 1	
172.	When the back pressure of a nozzle is below the nozzle is said to be	designed value of pressure at exit of nozzle (,
	(1) under expanding	(2) over expanding	1500
	(3) choked	(4) super saturated	「おいい」で
173.	The availablé enthalpy drop in a supersaturated an equilibrium flow	flow of steam through a nozzle as compare (ed
	(1) remains same	(2) increases	
.e.	(3) decreases	(4) unpredictable	
174.	The Parson's reaction turbine has	(
	(1) only moving blades		
	(2) only fixed blades	and a statistic to be a set	
	(3) different shapes of fixed and moving blade	640-6-09-250-27-65	
	(4) identical shape of fixed and moving blades	683831 3382/ 81411 12	
175.	The isentropic enthalpy drop in moving blade blades of a turbine. The degree of reaction will	is 2/3 rd of the isentropic enthalpy drop in the be	fi
	(1) 0.4	(2) 0.56	
- Contraction	(3) 0.67	(4) 1.67	
176.	The cooling system used for supersonic air cra	afts and rockets is (
	(1) simple air cooling system	(2) boot-strap air cooling system	
	(3) reduced ambient air cooling system	(4) regenerative air cooling system	
177.	The capacity of a domestic refrigerator is in th	ne range of . (
	(1) 0.1 to 0.3 T	(2) 0.5 to 1.0 T	
	(3) 1 to 3 T	(4) 3 to 5 T	

150		ECET [FDH] MECHANICAL ENGINEERING				
178.	The capillary tube is not used in large capacity refrigeration systems because ()					
	(1) It is made of copper					
	(2) capacity control is not possible					
÷	(3) required pressure drop cannot be achieved	ved				
	(4) cost is too high					
179.	In aqua-ammonia and lithium bromide - wat are respectively.	ter absorption refrigeration systems, the refrigerants ()				
	(1) water and water	(2) water and lithium bromide				
	(3) ammonia and lithium bromide	(4) ammonia and water				
180.	Queuing theory is associated with	· ()				
	(1) inventory	(2) sales				
	(3) waiting time	(4) production time				
181.	The routing function in a production system	n design is concerned with (
	(1) manpower utilization	(2) machine utilization				
	(3) quality assurance of the product	(4) optimizing material flow through the plant				
182.	The value engineering technique in which development is called	h experts of the same rank assemble for product				
	(1) brain storming	(2) Delphi				
	(3) morphological analysis	(4) direct expert comparison				
183.	The type of organization preferred for an automobile industry ()					
	(1) line organization	(2) functional organization				
	(3) line and staff organization	(4) line, staff and functional organization				
184.	The mathematical technique for finding the maximum manner is known as	best use of limited resources of a company in the ()				
N. 1.	(1) value analysis	(2) network analysis				
-	(3) queuing theory	(4) linear programming				
185.		r month is Rs.5000/ The variable cost per product cce. The break even production per month will be				
	(1) 300	(2) 400				
Y .	(3) 500	(4) 1000				
186.	Bin cards are used in	()				
	(1) machine loading	(2) quality control				
	(3) stores	(4) inventory				

ECET	2012 QUESTION PAPER *** *** **** **** **** ****	s ans and 97% 98% 20% 20% 20% 20%	⊯ 1	51
187.	The charet which gives an estimate about the	he amount of materials handling between	vario	ous
	work stations is known as	a na sa a	()
	(1) flow chart	(2) process chart		
	(3) travel chart	(4) operation chart		
188.	The type of layout suitable for manufacturing	g tools and gauges	()
	(1) product layout	(2) process layout		
	(3) combination of product and process layo	out (4) fixed position layout		
189.	The forecasting technique used for new pro-	duct is	()
-	(1) Box Jenkins	(2) Single exponential smoothing		
	(3) Delphi type	(4) simple regression		
190.	Six sigma level of quality control means		()
	(1) 2.1 defects per million opportunities	(2) 3.4 defects per million opportunities	5	
	(3) 4.3 defects per million opportunities	(4) 5.7 defects per million opportunities	S	
191.	In inventory control theory, the economic or	der quantity is	()
	(1) average level of inventory	(2) optimum lot size	- AND	and the second
	(3) capacity of a warehouse	(4) lot size corresponding to break-even a	inaly	sis
192.	In a single dry plate clutch, torsional vibratic	ons are absorbed by	()
	(1) coil springs	(2) cushion springs		
	(3) central hub	(4) clutch pedal		
193.	The torque converter uses to	transfer torque.	()
	(1) air	(2) automatic transmission fluid		
	(3) gears	(4) steel belt		
194.	In a four wheel drive, the number of gear be	oxes are	()
	(1) 1	(2) 2		
	(3) 3	(4) 4		
195.	In a hydraulic power steering system, the po	ower steering pump is driven by a	()
	(1) belt driven by camshaft	(2) chain driven by crankshaft		
- All	(3) belt driven by driveshaft	(4) belt driven by crankshaft		-
196.	Which of the following parameter can be ad	justed by modifying the tie-rod attachment	leng	gth?
A CONTRACTOR OF			.()
- Alexandre	(1) camber	(2) caster		
Contraction of the second	(3) toe	(4) steering gear ratio		
197.	The gudgeon pin connects		()
14	(1) crankshaft and connecting rod	(2) connecting rod and piston		
	(3) connecting rod and cam shaft	(4) piston and crank shaft		
		2012)		

198. The function of antilock brake system is that it

(1) reduces the stopping distance

(2) minimizes the brake fade

- (3) maintains directional control during braking by preventing the wheel from locking
- (4) prevents nose dives during braking and there by postpones looking of the wheels

199. Odometer is an instrument used for measurement of

(1) power

(2) fuel consumption

(3) engine rpm

(4) distance

)

()

200. The problem caused by the wheel imbalance is

- (1) hard steering and hard ride
- (2) poor acceleration and hard steering
- (3) steering wheel vibrations and uneven tyre wear
- (4) poor acceleration and reduced fuel efficiency

KEY O

							1 1 1		
101. 3	102. 3	103. 1	104.	105. 1	106. 4	107. 3	108. 4	109. 3	110. 3
111. 1	112. 2	113. 1	114. 1	115. 4	116. 1	117. 3	118. 1	119. 1	120. 3
121. 1	122. 1	123. 4	124. 3	125. 2	126. 1	127. 4	128. 4	129. 2	130. 1
131. 2	132. 1	133. 3	134. 4	135. 1	136. 3	137. 4	138. 3	139. 3	140. 4
141. 3	142. 1	143. 2	144. 1	145. 2	146. 3	147. 4	148. 1	149. 2	150. 1
151. 3	152. 2	153. 2	154. 4	155. 1	156. 3	157. 3	158. 2	159. 2	160. 1
161. 2	162. 3	163.	164. 4	165. 2	166. 2	167. 1	168. 1	169. 4	170. 1
171. 3	172. 1	173. 1	174. 4	175. 4	176. 4	177. 1	178. 3	179. 2	180. 3
181. 4	182. 1	183. 3	184. 4	185, 3	186, 3	187. 1	188. 2	189. 3	190. 2
191. 2	192. 1	193. 3	194. 1	195. 3	196. 3	197. 2	198.	199. 3	200. 3

STATE STATE

Giacidia Dilatikan

040-65

POLYCET

I Road,

77abad. 552352

3382352