T.S - ECET-EEE-2015

1.	The abbreviation MCCB Stands for							
	(1) Miniature case circuit breaker	(2) Maintenance case circuit breaker						
	(3) Moulded case circuit breaker	(4) Metal case circuit breaker						
2.	The operation of distance relays depends u	pon						
	(1) Voltage	(2) Current						
	(3) Power	(4) Impedance						
3.	Induction type of relays are used for prote	ction purposes involving						
	(1) ac only	(2) dc only						
	(3) ac and dc	(4) non sinusoidal ac only						
4.	Choose a wrong statement from the following	ing : Current limiting reactor is used to						
	(1) Filter out spikes of current	A CONTRACT OF THE PARTY						
	(2) Reduce injection harmonics into power	(2) Reduce injection harmonics into power supply						
	(3) Increase the system power factor							
	(4) Limit starting current of motors							
5.	For protection of incipient faults on transfer	ormers, relay used is						
	(1) differential relay	(2) Buchhloz relay						
	(3) thermal relay	(4) electromagnetic relay						
6.	Merz-price circulating current protection is	used in						
	(1) Transformers	(2) Alternators						
	(3) Motors	(4) Sub-stations						
7.	In any transmission line with parameters A good	, B, C & D constants, the following relation hold						
	(1) AD = BC	(2) AC = BD						
	(3) $AD = BC + 1$	(4) $AC = BD + 1$						
8.	String efficiency is defined as							
	(1) (no. of units × voltage across the string) / voltage across bottom most unit)							
	(2) (no. of units × voltage across bottom most string) / voltage across the string)							
	(3) Voltage across bottom most unit / (no. of units × voltage across the string)							
	(4) Voltage across the string / (no. of units	× voltage across bottom most unit)						

(2) 33.33%

(4) 75%

Its string efficiency is

(1) 25%

(3) 66.7%

18.	The speed of a train thinking into considerarunning time between stops, is called as	ation of time of stops at stations including the actual
	(1) Average speed	(2) Notching speed
	(3) schedule speed	(4) Free running speed
19.	The area of speed - time curve of a train gi	ives
	(1) Power consumed	(2) Energy consumed
	(3) Acceleration of the train	(4) Distance travelled
20.	Which of the following is called composite	system of track electrification
	(1) Three-phase ac system	(2) Three-phase low frequency system
	(3) Single-phase low frequency system	(4) Single-phase to dc system
21.	Specific energy consumption is measured i	n e de la companya de
	(1) Watt Hrs per tonne per kM	(2) Watt seconds per tonne per kM
	(3) Watt Hrs per kg per kM	(4) Watt Hrs per tonne per meter
22.	The maximum value of coefficient of adhes	sion is:
	(1) 0.20	(2) 0.15
	(3) 0.30	(4) 0.50
23.	When two traction motors are used for se starting time is:	ries-parallel starting, the energy efficiency during
	(1) 80.0%	(2) 75.0%
	(3) 50%	(4) 66.7%
24.	Electrical appliances are controlled by swit	ches connected in
	(1) Earth wire	(2) Phase wire
	(3) Neutral wire	(4) Ground wire
25.	The lamp mostly used in commercial adver-	tisements is
	(1) MAT type MV	(2) Neon indicator lamp
	(3) Neon sign lamp	(4) Sodium vapour lamp
26.	The supply voltage at the point of commend voltage value by more than	eement of supply should not vary from the declared
	(1) 4%	(2) 5%
=	(3) 7.5%	(4) 10%
27.	As per international standards, a good earthivalue of	ng in residential buildings can have a resistance (R)
	$(1) \ 0 < R < 1\Omega$	(2) $0 < R < 10\Omega$
	$(3) \ 0 < R \le 5\Omega$	$(4) 0 < R \le 1\Omega$
4500 B 4000	ిమానిని మాధ్రములు కొద్దించా చద్దించా ఇద్దించా అధికా అధికేందా అధికేందా కొద్దించారి ప్రస్తున్నారు. ఈ సంస్థలు చద్దించి	nerellijaanske valle valle val kantige verke kantige val kantige val kantige val kantige val kantige val kanti

158		(T.S) ECET PAPER
28.	Constant voltage can be obtained in a circuit	when zener diode is
	(1) Forward biased within cut - in voltage	(2) Reverse biased after break - down voltage
8	(3) Forward biased after cut - in voltage	(4) Reverse biased within break - down voltage
29.	The output frequency of a single-phase, 50 I	Iz, half-wave rectifier is:
	(1) 50 Hz	(2) 25 Hz
	(3) 100 Hz	(4) zero Hz
30.	Time delay and phase can be measured by u	sing a
	(1) VTVM	(2) PMMC
	(3) Sphere gap	(4) CRO
31.	Unity Current gain can be obtained in an amp	litier
	(1) Common base configuration	(2) Common emitter configuration
	(3) Common collector configuration	(4) Common base & collector configurations
32.	The binary equivalent of decimal number 752	2 is :
	(1) 1101110000	(2) 1011100000
	(3) 10111101000	(4) 1011110000
33.	When both the inputs of a logic are same, the of gate is called	e output is zero; otherwise output is one. This type
	(1) NAND gate	(2) NOR gate
	(3) Exclusive OR gate	(3) Exclusive NOR gate
34.	Pick the voltage controlled devices from the	following:

(2) IGBT & SCR

The voltage across a SCR is found to be 68 V and the current is 0.01 mA. Now the device is :

Cut - off region, negative resistance region and saturation region are regions in volt-amp.

(2) LASCR

(2) $16\frac{2}{3}$ Hz

(4) 25 Hz

(4) GTO

(4) MOSFET & IGBT

(2) Forward biased & turned - on

(4) Reverse biased & turned - on.

(1) MOSFET & GTO

(1) Forward biased & turned-off

(3) Reverse biased & turned - off

The possible output frequency of a 60 Hz cyclo-converter is:

(3) SCR & GTO

Characteristics of

(1) UJT

(3) TRIAC

 $(1)60 \, Hz$

(3) 20 Hz

35.

(2) 3125Ω (4) 125Ω

(2) 0.25

(4) 2.0

Two resistances of 1 Ω each are connected first in series and then later in parallel. The ratio of

resistance will be (Volume remaining same)

equivalent series resistance to equivalent parallel resistance is

(1) 625Ω

(3) 25Ω

(1) 4.0(3) 1.0

57.	In which of the following dc motors torque	of same output power rating, speed is lowest at rated					
	(1) Compound motor	(2) Separately excited motor					
	(3) shunt motor	(4) Series motor					
58.	During speed control of dc shunt moto external resistance in series with	r, to increase the speed from minimum to rated value, the					
	(1) Field winding should be in maxim	um position at constant voltage					
	(2) Field winding should be in minimu	am position at constant voltage					
	(3) Armature winding should be in ma	eximum position at constant flux					
	(4) Armature winding should be in mi	nimum position at constant flux					
59.	The variable losses in a dc series motor	or are :					
	(1) Core losses & field losses	(2) Copper losses & field losses					
	(3) Stray losses & field losses	(4) Copper losses & stray losses					
60.	In a 220 V, separately excited do mot resistance and brushes are 4V, 3 V and	or, the voltage drops due to armature reaction, armature d 2 V respectively. The back emf is:					
	(1) 211 V	(2) 229 V					
	(3) 213 V	(4) 215 V					
61.	Controlling torque in an indicating instrument can be created by						
	(1) Elector - static effect	(2) Air - friction					
	(3) Gravity	(4) Eddy current					
62.	A moving iron animeter is connected in $\sin (314t + 45^{\circ})$. The meter reads	n a circuit whose instantaneous value is given by : $i = 20$					
	(1) 20 Amps	(2) $20 / \pi$ Amps					
	(3) $20/\sqrt{2}$ Amps	(4) $20/8 \sqrt{3}$ Amps					
63.	Kelvin double bridge is used to measur	re					
	(1) High resistance	(2) Self-Inductance					
1991	(3) Low resistance	(4) Mutual inductance					
64.	Frequency can be measured by:						
	(1) Schering bridge	(2) Wein's bridge					
	(3) Campbell bridge	(4) Maxwell bridge					
65.	In current transformer, the ratio of rate current is called	ted primary winding current to rated secondary winding					
	(1) Transformation ratio	(2) Turns ratio					
	(3) Ratio correction factor	(4) Nominal ratio					

162	The state of the s	(T.S) ECET PAPE
66.	In which of the following digital voltmeter	s two voltages are compared
	(1) Potentiometric type DVM	(2) Ramp type DVM
	(3) Integrating type DVM	(4) Successive type DVM
67.	Creep in energy meter is	
	(1) Slow running of disc at full load	(2) Fast running of disc at full loads
	(3) Slow running of disc at No load	(4) Fast running of disc at No load
68.	In single-phase ac R-L series circuit, volta across inductor	ge drop across the resistance the voltage drop
	(1) leads	(2) lags
	(3) is in phase with	(4) is in anti-phase with
69.	The maximum power consumed by a single 1000 W. At 3 dB frequencies, the power co	e-phase, variable frequency, R-L-C series circuit is onsumed is
	(1) 707 W	(2) 333.3 W
	(3) 1000 W	(4) 500 W
70.	A circuit consists of L and C in parallel acrecurrents in La and C is:	oss a single-phase ac source. The angle between the
	$(1) \ 0^0$	$(2).90^{0}$
	$(3) 180^{0}$	$(4) 360^{\circ}$.
71.	In delta connected 3-phase ac circuit	
	(1) phase voltage = $\sqrt{3}$ × line voltage	(2) phase current = $\sqrt{3}$ × line current
	(3) phase voltage = line voltage	(4) phase current = line current
72.	When power factor of a circuit is zero, then	n
	(1) apparent power = active power	(2) apparent power = reactive power
	(3) active power = reactive power	(4) reactive power = zero
73.	In measurement of 3-phase power, when rea power factor is	dings of two wattmeters are opposite sign, then the
	(1) unity	(2) 0.5 leading
die.	(3) 0.5 lagging	(4) zero
74.	If nine 9 μF capacitors are connected in ser	ries, then the equivalent capacitance is
	(1) 9 μF	(2) 10 µF
	(3) 1 u F	(4) 91 u.E

(1.5)	ECET QUESTION PAPER	s and provide the second construction of the second construction of the second			
75.	In a transformer, the primary	is equal to its corresponding secondary value			
	(1) voltage	(2) current			
	(3) power	(4) frequency			
76.	In case of a power transformer, the	ne no-load current in terms of rated current is			
	(1) 10 to 20%	(2) 2 to 6%			
	(3) 15 to 30%	(4) 30 to 50%			
77.	The iron losses of a transformer a will be	t full-load is 160 W. At three-fourth full-load, the iron losses			
	(1) 120 W	(2) 90 W			
	(3) more than 160 W	(4) 160 W			
78.	The colour of transformer oil when	n it is filled in after filtration is			
8	(I) brown	(2) black			
	(3) colour less	(4) pale yellow			
79.	For same kVA rating, an auto-tran	sformer has as compared to two-winding transformer			
20	(1) higher core losses	(2) lower efficiency			
	(3) lower copper losses	(4) larger size			
80.	A 3-phase star-delta transformer primary line current of 10 A, the s	has primary to secondary turn's ratio per phase of 5. For a secondary line current would be			
	(1) 50 A	(2) 86.6A			
	(3) 3.464 A	(4) 150 A			
81.	The no-load and rated load voltage percentage voltage regulations is:	es of a transformer are 220 V and 200 V respectively. The			
	(1) 8	(2) 10			
	(3) -10	(4) -9			
82.	In a 6-pole ac machine, the mechan	nical angle is always equal to			
	(1) 6 × electrical angle	(2) 3 × electrical angle			
	(3) electrical angle/6	(4) electrical angle/3			
83.	In an alternator, if armature resistance is 1Ω and armature reactance and leakage reactance is 2Ω each, then synchronous impedance is				
	(1) $\sqrt{17} \Omega$	(2) $\sqrt{5} \Omega$			
	(3) $\sqrt{13} \Omega$	(4) 3Ω			

84.	Two alternators (A and B) are cor increased, then	nnected in parallel and when steam is	uput of machine 71 is			
	(1) kVA (B) remain constant	(2) kW (A) decreases				
	(3) kVA (B) increases	(4) kW (A) increases				
85.	In synchronous motor if field curre	ent increases, then				
	(1) power factor increases and ther	n decreases				
	(2) power factor decreases and the	n increases				
	(3) armature current increases and	the decreases				
	(4) both power factor and armature	e current remain constant				
86.	A 3-phase, 6-pole synchronous mo	tor runs at a speed of 900 rpm. The s	supply frequency is			
	(1) 50 Hz	(2) 45 Hz				
	(3) 30 Hz	(4) 33.3 Hz				
87.	As load on a synchronous motor in	ocreases				
	(1) speed increases	(2) speed decreases				
1120 1	(3) load angle increases	(4) load angle decreases				
88.	Maximum torque of a 3-phase squirrel cage induction motor occurs when					
	(1) $slip = 0.5$	(2) $slip = 1.0$				
	(3) $0 < \text{slip} < 0.5$	(4) $0.5 > \text{slip} > 1.0$				
89.	In 3 - phase slip-ring induction mo	tor as external rotor resistance increas	ses			
	(1) starting torque increases & spe	ed decreases				
	(2) starting torque decreases & spe	eed increases	- 2 to			
	(3) maximum torque increases & speed decreases					
	(4) maximum torque decreases & speed increases					
90.	A 3-phase, 50 Hz, 6 pole induction resistance of 0.2 Ω per phase. The	motor running at a speed of 980 rpm total per phase resistance on rotor sid	has a equivalent rotor de is			
	(1) 0.200Ω	(2) 10Ω				
	(3) 0.204Ω	$(4) 100\Omega$				
91.	The rotor current frequency of 5% frequency is	% slip of a 3-phase induction motor	is 3 Hz. The supply			
	(1) 50 Hz	(2) 15 Hz				
	(3) 60 Hz	(4) 45 Hz				

(T.S) ECET QUESTION PAPER					
92.	In single-phase induction motor, the	angle between two stator currents during starting is nearly:				
	$(1) 180^0$	$(2) 90^{\circ}$				
	$(3) 120^0$	(4) 45°				
93.	An universal motor can be operated	with				
	(1) single-phase ac supply	(2) de supply				
	(3) single-phase ac supply & dc sup	ply (4) three - phase ac supply & dc supply				
94.	A pair of brushes are shorted in					
	(1) uncompensated ac series motor	(2) universal motor				
	(3) compensated ac series motor	(4) repulsion motor				
95.	In hydro-electric plants, for heads ab	ove 500 m is used				
	(1) francis turbine	(2) pelton wheel				
	(3) propeller turbine	(4) kaplan turbine				
96.	In thermal power station, flue gases	flow to the chimney through				
	(1) economizer, air pre-heater & indu	aced draught fan				
	(2) economizer, re-heater & induced draught fan					
	(3) air pre-heater, forced draught fan & induced draught fan					
	(4) air pre-heater, re-heater & induced draught fan					
97.	Diversity factor is defined as:					
	(1) max, load on the station/sum of consumer's max. demands					
	(2) sum of consumer's average demands/max. load on the station					
	(3) sum of consumer's max. demands/average load on the station					
	(4) sum of consumer's max. demands	max. load on the station				
98.	The maximum demand and average demand on a steam power plant are 500 MW and 250 MW respectively. If the connected load is 750 MW, the demand factor is:					
	(1) 1/3	(2) 2/3				
4	(3) 1/2	(4) 1				
99.	The tariff named kVA maximum dema	and tariff belong to the main category of				
***	(1) maximum demand tariff	(2) power factor tariff				
	(3) block rate tariff	(4) two part tariff				
100.	Choose one of the following fuse metals having highest melting point					
	(1) copper	(2) silver				
	(3) aluminium	(4) zinc				

KEY

1) 3	2) 4	3) 1	4) 3	5) 2	6) 2	7) 3	8) 4	9) 3	10) 1
11) 3	12) 2	13) 1	14) 4	15) 3	16) 2	17) 4	18) 3	19) 4	20) 4
21) 1	22) 3	23) 2	24) 2	25) 3	26) 2	27) 1	28) 2	29) 1	30) 4
31) 1	32) 4	33) 3	34) 4	35) 1	36) 1	37) 3	38) 4	39) 1	40) 2
41) 3	42) 3	43), 1	44) 3	45) 4	46) 2	47) 1	48) 2	49) 1	50) 4
51) 3	52) 3	53) 3	54) 1	55) 4	56) 3	57) 4	58) 3	59) 2	60) 1
61) 3	62) 3	63) 3	64) 2	65) 4	66) 1	67) 3	68) 2	69) 4	70) 3
71) 3	72) 2	73) 4	74) 3	75) 3	76) 2	77) 4	78) 4	79) 3	80) 2
81) 2	82) 4	83) 2	84) 4	85) 1	86) 2	87) 3	88) 4	89) 1	90) 2
91) 3	92) 2	93) 3	94) 4	95) 2	96) 3	97) 4	98) 2	99) 2	100) 2

