ECET

CACADEMY ECET /POLYCET DIPLOMA TUTTIONS Gaddiannaram X Road, Dilsukhnagar, Hyderabad. 040-66662352/65352352 8885352352/8143352352

ELECTRONICS AND COMMUNICATION ENGINEERING

1.	An LVDT produces an output vol LVDT is	oltage of 2.6V for displacement 0.4mm. The sensitivity of	of)
	(1) 6.5 V/mm	(2) 5.5 V/mm	40
	(3) 7.5 V/mm	(4) 1 V/mm	
	Sensitivity = $\frac{V_{rms}}{Displacement} = \frac{2.63}{0.4m}$	$\frac{V}{nm} = 6.5 \text{ V/mm}$	
2.	Thermistor has resistivity from	to Ω cm. ()
	(1) 10^{-2} to $10^{7} \Omega$ -cm	(2) 10^{-1} to $10^{9} \Omega$ -cm	
	(3) 10^1 to 10^9 W-cm	(2) 10^{-1} to $10^{9} \Omega$ -cm (4) 10^{-9} to $10^{+9} \Omega$ -cm	
3.	At low output frequencies, the volta	tage waveform at the output of a cyclo converter is a ()
	(1) Stepped voltage waveform		
	(2) Rectangular voltage waveform	a	
	(3) High quality simulsoidal wavef	form	
	(4) Waveform rich in harmonics		
4.	Q-factor of series resonance circuit	t can be increased by)
	(1) Using a coil of large inductance	ce but of small ohmic resistance	
	(2) Using a coil of large inductance	ce and large ohmic resistance	
	(3) Using a coil of small inductance	ce and large ohmic resistance	
	(4) Using a coil of small inductance	ce and small ohmic resistance	
5.	The advantage of SCR over thyristo	or ()
	(1) Large size		
	(2) Noiseless operation		
	(3) Higher current handling capacit	ity	
	(4) Easy to install		

6.	Snow in a television picture is a result of		()
	(1) High Q in a tuned circuits		
	(2) Excessive gain		
	(3) Random noise in the signal		
**	(4) Insufficient wave traps		*
7.	RMS value of the voltage function given by	by $V(t) = 100 + 25 \sin wt + 10 \sin 5 wt \text{ vol}$	lts is ()
	(1) 135V	(2) 125V	
	(3) 113.3V	(4) 101.8V	
8.	A darlington pair is used for		()
	(1) High current gain		
	(2) High power gain		
	(3) Low distortion		
	(4) High frequency operation		
9.	In a three phase synchronous motor, the	magnitude of field flux	()
	(1) Varies with speed		
	(2) Varies with load		
	(3) Varies with power factor		
	(4) Remains constant at all loads		
10.	The characteristic impedance of a transm	nission line depends on	()
	(1) Shape of the conductor		8 V
	(2) Surface treatment of conductors		
	(3) Conductivity of the material		
	(4) Geometrical configuration of the co	onductors	
11.			()
-	(1) Parabolic	(2) Rhombic	
	(3) Yagi-uda	(4) Broad side array	4134 a
12.			()
	(1) TDM	(2) FDM	
	(3) PCM	(4) All the above	

13.	A wave guide behaves as a	()
	(1) Low pass filter	¥	
	(2) High pass filter		
	(3) Band pass filter		
	(4) Band elimination filter		
14.	For satellites a helical antenna is used because	()
	(1) It offers better bandwidth		
	(2) It has circular polarization		
	(3) It occupies less space		
	(4) All the above		
15.	Balun	()
	(1) Is used in radars		100
	(2) Is auxiliary for power transformers		
	(3) Is used for matching two signals of different frequencies		
	(4) Is used to connect coaxial line to dipole antenna		
16.	The best excited reflector from a wave guide is	()
	(1) Parabolic (2) Biconical	8	
	(3) Corner (4) Horn		
17.	The ionosphere plays a significant role in radiowave propagation at	()
	(1) High frequencies		
	(2) Ultra high frequencies		
49	(3) Microwave frequencies		
	(4) Optical frequencies		
18.	In case the height of transmission tower is increased	()
	(1) The line capacitance and inductance will not change		F
	(2) The line capacitance will decrease but line inductance will remain unaltered		
	(3) The line capacitance will increase but line inductance will decrease		
	(4) The line capacitance will decrease and line inductance will increase		

(3) Variable sensitivity

(3) Vertical blanking

(4) Vertical retrace

		•	
	(1) Narrow bandwidth		
	(2) High SWR		
	(3) High noise level		
- 127	(4) Poor directivity		
28.	If all television satellites use the same station select one satellite?	3.7 to 4.2 GHz band for downlink s	signal, how can an earth
10	(1) Tuning the waveguides		
	(2) Narrow beam receiving antenna	-	
	(3) Low-noise parametric amplifier		
	(4) High Q cavity resonators		
29.	A superheterodyne receiver with an I frequency is	F of 450 kHz is tuned to a signal at	t 1200 kHz. The image
	(1) 900 kHz	(2) 1650 kHz	The state of the s
	(3) 2100 kHz	(4) 750 kHz	
	$f_{im} = f_s + 2f_{if}$		
30.	In case the antenna diameter in a rad	dar system is increased to four time	es, the maximum range
	will increase by		()
	(1) $\sqrt{2}$ times	(2) 2 times	
	(3) 4 times	(4) 8 times	
31.	A circuit with a resistor, inductor a component values are now doubled,		nt at fo Hz. If all the
	(1) 2fo	(2) fo	
	$(3) \frac{fo}{4}$	$(4) \frac{fo}{2}$	

32.	In a microprocessor, the register which holds the address of the next instruction to b	e fetched ()
	(1) Accumulator	
	(2) Base pointer	
	(3) Stack pointer	
	(4) Instruction pointer	
33.	The output of a logic gate is '1' when all its inputs are at logic '0'. The gate is either	()
	(1) a NAND or an Ex-OR gate	
	(2) a NOR or an Ex-OR gate	
	(3) an OR or an Ex-NOR gate	
	(4) an AND or an Ex-OR gate	
34.	A 10 bit A/D converter is used to digitise an analog signal in the 0 to 5V range. The peak ripple voltage that can be allowed in the DC.	maximum ()
	(1) Nearly 10m V	
	(2) Nearly 50m V	**
	(3) Nearly 25m V	
	(4) Nearly 5.0m V	
35.	The minimum number of two input NAND gates required to implement the Boolean	n function
	$A + A \overline{B} + A \overline{B} C$ is	()
	(1) Zero (2) One	
	(3) Four (4) Seven	
36.	A carry look ahead adder has advantage over normal 'n' bit adder	()
	(1) Faster	
	(2) More accurate	
	(3) Fewer gates required	
	(4) Costs less	
37.	A pulse train can be delayed by a finite number of clock periods using	()
7	(1) A serial - in serial out shift register	
	(2) A serial - in parallel out shift register	
	(3) A parallel in serial out shift register	
	(4) A parallel in parallel out shift register	

(2) 6

(4) 24

(1) 1

(3) 10

					the second was a second			1000
45.	Wh	en a CPU is interrupted, it	*				(.)
	(1)	Stops execution of instructions						
	(2)	Acknowledges interrupt and branches to	o a s	ubroutine		Twee I		
	(3)	Acknowledges interrupt and continues						
	(4)	Acknowledges interrupt and waits for n	next i	instruction fr	om interrupt	ing device		
46.		n 16 bit microprocessor, words are stored to can be read in one operation provided			tive memory	locations.	Γhe ent	ire)
	(1)	Word is even			*	ti-		
	(2)	Word is odd						
	(3)	Memory location is odd						
	(4)	Memory location is even						
47.	Hov	w many address lines needed to address e	each 1	memory loca	tion in a 204	8 × 4 memo	ory chij	p ?
							()
	(1)	10	(2)	11				
	(3)	8	(4)	12				
48.	The	interface chip used for data transmission	n bet	ween 8086 a	nd a 16 bit .	ADC is	()
	(1)	8259	(2)	8255				
	(3)	8253	(4)	8251.				
49.	The	e maximum power efficiency of an AM r	modu	ılator is			(,)
	(1)	25%	(2)	50%				
	(3)	75%	(4)	100%		175		
50.	The	e signal to quantisation noise ratio is an n	ı bit l	PCM system			()
	(1)	Depends upon the sampling frequency	emp	loyed				
	(2)	Is independent of the value of 'n'						
	(3)	Increases with increasing value of 'n'						
	(4)	Decreases with increasing value of 'n'						
51.	The	e envelope detector is a/an				*	())
	(1)	Synchronous detector						
	(2)	Asynchronous detector				*		
	(3)	Product demodulator	74					
	(4)	Coherent detector						

ECET (FDH)	(Electronics &	Commu	nication	Engineerin	ıg)
	The second secon		THE RESERVE OF THE PARTY.		

52.	Th QI	ne bit rate of a digital communication system is 34 M bits/sec. The modulation spSK. The bank rate of the system is	schen	ne is
	(1)) 68 M bits/sec		
	(2)) 34 M bits/sec		
	(3)) 17 M bits/sec		
	(4)	8.5 M bits/sec		
53.	An	increase in the modulation index leads to increase in band width in case of	()
	(1)			
	(3)	PM (4) Both FM and PM		
54.	In	a 100% Amplitude modulated signal, if the total transmitted power is P, the carrier po	ower	will
	be		()
	(1)	$\frac{2}{3} P$ (2) $\frac{1}{2} P$		
	(3)	$\frac{1}{3}P$ (4) $\frac{1}{4}P$		
55.	An	FM signal with modulation index m_f is passed through a frequency tripler. The modulation	odulat	ion
	inde	ex of the output signal will be	()
	(1).	m_f (2) $3m_f$		
	(3)	$9m_f$ (4) $27m_f$		
56.	Me	ssage switching in computer communication	()
	(1)	Is a store and forward system	**	800
	(2)	Requires a dedicated path between transmitter and receiver		
	(3)	Is used only for long messages		,
zelike et nelsee Vistorie	(4)	Does not require a buffer at transmitter		
7.	The	capacity of a channel is given by the	()
	(1)	Number of digits used in coding		50 50 7
	(2)	Volume of information it can take	ž:	
	(3)	Maximum rate of information transmitted		

(4) Bandwidth required for information

(4) B log₂ (SNR)

58.	If the number of bits per sample in a PCN in signal-to-quantisation noise ratio will	M system is increased from m to $m + 1$, the im be	provement ()
	(1) 3 dB	(2) 6 dB	
	(3) 2 mdB	(4) m dB	
59.	A PLL can be used to demodulate	•	(')
	(1) PAM signals		
	(2) PCM signals		
	(3) FM signals		
	(4) DSB-SC signals		
60.	For the delivery of individual packets from responsible	om the source host to the destination host	layer is
	(1) Physical layer		
	(2) Data link layer		
	(3) Network layer		
	(4) Transport layer		
61.		100 pages per minute, with an average of 24 paracter requires 8 bits. What is the required	
	(1) 2 Mbps	(2) 1 Mbps	
	(3) 1.536 Mbps	(4) 2.536 Mbps	
62.	The value of SNR _{dB} for a noiseless char	nnel is	()
	(1) 1 dB	(2) 10 dB	
	(3) 100 dB	(4) infinity	
63.	Shannon capacity (for 'B' bandwidth of	the channel) is	()
	(1) B log ₂ (1 + SNR)		
	(2) $B \log_{10} (1 + SNR)$		
	(3) $\frac{1}{B} \log_2 (1 + SNR)$		

(5) Zener breakdown

70.	When a junction diode is used in switching applications, the forward recovery time is	()
	(1) Of the order of the reverse recovery time		
	(2) Negligible in comparision to the reverse recovery time		
	(3) Greater than the reverse recovery time		
	(4) Equal to the mean carrier life time τ for the excess minority carriers		
71.	The break down voltage of a transistor with its base open its βV_{CEO} and with emitter of βV_{CBO} , then	open (is)
	(1) $\beta V_{CEO} = \beta V_{CBO}$		
	(2) $\beta V_{CEO} > \beta V_{CBO}$		
	(3) $\beta V_{CEO} < \beta V_{CBO}$		
	(4) Is not related to βV_{CBO}		
72.	the best to emitter voltage V is 0.7V and the collector	to b	ase)
	(1) Normal active mode (2) Saturation mode		
	(3) Inverse active mode (4) Cut-off mode		
73.	The voltage gain of a given common source JFET amplifier depends on its	()
	(1) Input impedance		
	(2) Amplification factor		
	(3) Dynamic drain resistance		
	(4) Drain load resistance		
74.	In a common Emitter amplifier, the un bypassed emitter resistance provides		
	(1) Voltage shunt feedback		
3	(2) Current series feedback		
	(3) Negative voltage feedback		
	(4) Positive current feedback	0 - 1	D T
75.	To avoid thermal runaway in the design of an analog circuit, the operating point of should be such that it satisfies the condition	the .	BJ
	(1) $V_{CE} = \frac{V_{CC}}{2}$ (2) $V_{CE} \le \frac{V_{CC}}{2}$		

$$(3) V_{CE} > \frac{V_{CC}}{2}$$

(4)
$$V_{CE} < 0.78 V_{CC}$$

76. In the circuit shown in figure, if $e_1 = 2V$, $e_2 = 5V$, $e_3 = 1V$ and E = 2V, then which of the diodes will be conducting and what will be e_0

Fig. 3

(1)	D_3 ;	1V	1		
	2				

(3) D₂; 5V (4) D₁; 5V

77. In a bootstrap sweep circuit, the amplifier gain A should be

(1) Infinity

(2) Finite

(2) D₁; 2V

(3) Unity

(4) Zero

78. For elimination of hysteresis in a selimitt trigger, the loop gain must be ()

 $(1) \le 1$

(2) > 1

(3) = 1

 $(4) = \infty$

79. A _____ multivibrator is used for digital operations like counting and storing of binary information

()

- (1) Bistable
- (2) Monostable
- (3) Astable
- (4) Schmitt Trigger

80. For a perfect differentiator

(1) RC = T

(2) $RC \leq T$

(3) RC >> T

(4) RC = 0.5T

81. A 5V step is applied to an RC low pass circuit with R = 10K ohms and C = 100PF. The time for the capacitor to fully charge is

(1) 1μ sec

(2) 0.1 μ sec

(3) $10\mu \sec$

(4) 5μ sec

(1) 5H

(3) 1.4 ohm

82.	If a network contain B branches, and N would be	l Node	es, then the number of mesh current	equations ()	S
	(1) $B - (N - 1)$	(2)	N - (B - 1)		
	(3) $B - N - 1$	(3)	(B+N)-1		
83.	Three equal resistances of 5 ohms are co arms of the equivalent star circuit?	nnecto	ed in delta. What is the resistance in	one of the	3
	(1) 5 ohms	(2) 1.33 ohms		
	(3) 2.66 ohms	(4) 10 ohms		
84.	The rms current through a 10 K ohm resistor? $(V = IR)$	istor is	5 mA. What is the rms voltage drop	across the	e)
	(1) 10V	(2) 5V		
	(3) 50V	(4) 0V		
85.	The current in a pure inductor			())
	(1) Lags behind the voltage by 90 ⁰				
	(2) Leads the voltage by 90 ⁰				
	(3) Is in phase with the voltage				
	(4) Lags behind the voltage by 45 ⁰				
86.	In a given series RLC circuit, X _C is 150 c	ohms	and X_L is 80 ohms, what is the total r	eactance	?
	and what is the type of reactance?		es and the second secon	()
	(1) 70 ohm, inductive				
	(2) 70 ohm, capacitive	Minne			
	(3) 70 ohm, resistive				
	(4) 150 ohm, capacitive				
87.	Thevenin's impedance of the circuit at its	s termi	nals A and B in the given circuit is	()
			5H		
		70	000 —— o A		
	20 <u> 30</u> ° 🔄	≱ 2Ω			
			—— о В		

Fig. 4

(2) 2 ohm

(4) 7H

ECET (FDH)	(Electronics	& Com	munication	Engine	ering
DODA (FDIA)	(Diecoronics	OF COLL	munication	MILETIN	011116/

(4) Under all the above conditions

152

95.	A lissajous pattern on a CRO is static maximum values. The frequency of input is	onary and has six vertical maximum values and horizontal input is 1500Hz. Then the frequency	d five horizontal ency of vertical
	(1) 1500 Hz	(2) 1800 Hz	
	(3) 2400 Hz	(4) 1000 Hz	
96.	Two voltmeters A ₁ and A ₂ are conresistance of 150 ohms per volt. Voltine voltage is	nected in series across a dc line. A_1 reads 70 oltmeter A_2 has a total resistance of 20,000	ohms. Then the
	(1) 220 V	(2) 400 V	
	(3) 203.3V	(4) 101.6V	
97.	The term "flyback" is associated w	rith	()
	(1) Zener diode	(2) CRT	
	(3) Rectifier	(4) SCR	
98.	The characteristic impedance Z_0 of	a lossless transmission line is equal to	()
	(1) \sqrt{LC} (3) $\sqrt{\frac{C}{L}}$	(2) $\sqrt{\frac{L}{C}}$ (4) $\frac{1}{\sqrt{LC}}$	
99.	The standing wave ratio (SWR) eq	ual to unity implies that	()
	(1) The transmission line is open	circuited	
	(2) The transmission line is short	circuited	
	(3) The transmission line characte	eristic impedance is equal to zero	
	(4) The transmission line character	eristic impedance equal to load impedance	
100.	A wire of strain gauge is 0.1m long	g and has an initial resistance of 120 ohms. On $\Delta R = 10$ ohm. The gauge factor of	On application of of the device is
			()
	(1) 1	(2) 1.25	
	(3) 1.50	(4) 1.75	
	$GF = \frac{\Delta R / R}{\Delta L / L} = 0.039$		

		-				The state of			
1. 1	2. 2	3. 3	4. 1	5. 3	6. 3	7. 4	8. 1	9. 4	10. 4
11. 3	12. 3	13. 2	14. 2	15. 4	16. 4	17. 1	18. 2	19. 1	20. 2
21. 4	22. 2	23. 2	24. 3	25. 3	26. 3	27. 1	28. 2	29. 3	30. 3
31. 4	32. 4	33. 2	34. 4	35. 1	36. 1	37. 1	38. 1	39. 4	40. 3
41. 1	42. 2	43. 4	44. 3	45. 2	46. 4	47. 2	48. 2	49. 2	50. 3
51. 2	52. 3	53. 2	54. 1	55. 2	56. 1	57. 3	58. 2	59. 3	60. 3
61. 3	62. 4	63. 1	64. 2	65. 2	66. 2	67. 2	68. 4	69. 5	70. 2
71. 3	72. 1	73. 2,3,4	74. 2	75. 2	76. 3	. 77. 3	78. 3	79. 1	80. 2
81. 4	82. 1	83. 2	84. 3	85. 1	86, 2	87. 2	88. 3	89. 4	90. 2
91. 3	92. 1	93. 4	94. 1	95. 2	96. 3	97. 2	98. 2	99. 4	100. 5

